The Power of Reflective Relational Machines

S. Abiteboul

INRIA
B.P. 105
78153 Le Chesnay

France

Serge.Abiteboul@inria.fr

Abstract

A model of database programming with reflection,
called reflective relational machine, s introduced and
studied. The reflection consists here of dynamic gen-
eration of quertes in a host programming language.
The main results characterize the power of the ma-
chine in terms of known complexity classes. In partic-
ular, the polynomial-time restriction of the machine is
shown to express PSPACE, and to correspond precisely
to uniform circuits of polynomial depth and exponen-
tial size. This provides an alternative, logic-based for-
mulation of the uniform circuit model, more conve-
nient for problems naturally formulated in logic terms.
Since time in the polynomially-bounded machine coin-
cides with time in the uniform circuit model, this also
shows that reflection allows for more “intense” par-
allelism, which is not attainable otherwise (unless P
= PSPACE). Other results concern the power of the
reflective relational machine subject to restrictions on
the number of variables used.

1 Introduction

A model of computation, called relational ma-
chine, was introduced in [AV91] to capture standard

*Work performed while visiting INRTA. V.Vianu supported
in part by the NSF under grant IRI-9221268.

C.H. Papadimitriou™

V. Vianu*

CSE 0114
U.C. San Diego
La Jolla, CA 92093-0114
USA

{christos,vianu }@cs.ucsd.edu

database computation with a relational query lan-
guage embedded in a full-fledged programming lan-
guage, in the spirit of C4+SQL. Such programs use a
fixed set of relational queries, specified a prioriin the
code. Recently, a mode of programming called “re-
flection” has made a comeback in programming lan-
guages. The basic idea is as old as Universal Tur-
ing Machines and early assembly languages: reflection
allows the dynamic generation of code. Simple ex-
amples in modern programming languages are eval
in Lisp and clause in Prolog. In recent database
products, reflection allows the dynamic generation of
queries within the host programminglanguage. In this
paper, we extend the relational machine by allowing
the dynamic generation of queries, thus modeling re-
flective database programming. The results concern
the expressive power of the reflective relational ma-
chine with time and space restrictions on resources,
and with limitations on the number of variables al-
lowed in queries. The reflective relational machine
also provides a model of parallel computation anal-
ogous to the uniform circuit model, only formulated
in logic terms. The close correspondence to circuits,
which does not hold for non-reflective machines, sug-
gests that reflection allows to express more “intense”
parallelism than non-reflective programming.

Database query languages are based on first-order
logic over relations (F'O). However, FO itself can-
not express simple and useful database queries such
as connectivity: this observation has created a dy-
namic field of research at the interface of Database
Theory, Logic, and Complexity (see the surveys [Gu84,
Im87, Lei89a]). Control capabilities (such as iteration
and fixpoint) were added to logic [Ch81, Var82, Pa85,
Im86, AV89], and familiar computational paradigms
emerged as a result (Fagin’s important characteriza-

tion of NP [Fa74], although otherwise motivated, also
falls in this framework). The relational machine of
[AV91] is a more general, and at first inspection more
powerful, model of computation, in which the con-
trol is provided by a full-fledged Turing machine in-
teracting with a relational store via a logical query
language. The relational machine helps address the
thorny issue of order in computation. Database com-
putations typically manipulate unordered data. On
the other hand, all known models of computation as-
sume an ordered domain, or introduce an order via
their linear data structures. As a result of this funda-
mental incompatibility, characterizations of query lan-
guages in terms of complexity classes typically depend
(in a rather artificial way) on the underlying domain
being ordered!. Relational machines provide a cred-
ible computational model of order-free computation,
which can then be related naturally to the expressive
power of query languages. In particular, there is a
nice match between “relational” complexity classes de-
fined using this model, and query languages: relational
polynomial-time (P,) coincides with fizpoint, and rela-
tional polynomial space (PSPACE;,) is precisely while.
The results also yield a relation between the relative
power of languages with iteration or fixpoint (in par-
ticular, inflationary vs. noninflationary fixpoint) and
important complexity questions (the P vs. PSPACE
problem) [AV91].

Computing devices in the spirit of relational ma-
chines have already been investigated by Friedman
[Fri71] and Leivant [Lei89b], but with a different fo-
cus: Friedman’s emphasis is on generalizing recursion
theory, whereas Leivant’s is on logic characterizations
of computational complexity on ordered (or enumer-
ated) structures. In contrast, the focus on unordered
structures lies at the core of our investigation.

Relational machines capture database computation
and programming in the style of C+SQL. Since the
combined program is typically compiled, the database
queries in it are fixed. This limitation is reflected in
the relational machine’s use of a fixed set of queries. In
particular, it implies a constant bound on the number
of variables, a fact with important consequences on
expressive power. For example, relational machines
are subsumed by infinitary logic with finitely many
variables, LY =~ [BaT77], and so have a 0-1 law [KV90]
and cannot express certain “simple” queries such as
evenness? .

More recent database programming environments

1Fagin’s Theorem avoids this because in existential second-
order logic one can postulate the existence of an order.

2The evenness query on a set S is the query even(S)= true
iff |S] is even.

(such as the object-oriented 02 [BDK92, 02]) do
away with this limitation, and allow programmable
queries constructed by the program, and not directly
by the programmer. This reflective style of database
programming seems to be useful and popular among
users, for instance in programming user interfaces
[C193]. Relational machines as restricted in [AV91]
fail to model reflective database programs. In this pa-
per we extend relational machines so that they inter-
act with the relational store via a writable query tape.
We call such machines reflective relational machines,
as they were intended to capture the novel reflective
style of database programming alluded to above. The
main results characterize the power of such machines
in terms of known complexity classes. In particular,
we show that polynomial-time bounded reflective rela-
tional machines decide precisely the structure classes
decidable in PSPACE. In contrast, polynomial-time
bounded ordinary relational machines were shown in
[AVI1] to be a strict subset of P. Interestingly, our
result relates reflective relational machines to all of
PSPACE without the usual order assumption, a fea-
ture that makes it more directly relevant to database
theory.

Another aspect of interest is the connection be-
tween the reflective relational machine and parallel
models of computation. From a practical viewpoint,
the model is of interest because it captures the compu-
tational paradigm occurring in increasingly common
client/server architectures, where a client workstation
interacts with a database server running on a highly
parallel machine [DG92, Val93]. Thus, the core of
the parallelization consists in the use of the database
server. This is in the spirit of the reflective relational
machine, where the Turing machine component is se-
quential, and the relational computation counted as
one parallel step.

Since reflective relational machines answer complex
relational queries in a single step, they can also be
considered as a uniform model of parallelism. It turns
out that time in the polynomially bounded reflective
relational machine coincides with parallel time in the
standard uniform circuit model. Thus, the reflective
relational machine can be viewed as an alternative,
logic-based formulation of the uniform circuit model.
We believe that this model is more easily applicable
to problems which are naturally formulated in terms
of logic, since it circumvents the rather cumbersome
translation to the circuit framework.

Seen in terms of parallel complexity, our re-
sult relating polynomial-time reflective machines and
PSPACE is a little less surprising, as it falls within

the tradition of “the second machine class” of [vE90],
for which polynomial time always coincides with poly-
nomial space. In terms of the computational style of
which it is a model (a computer which occasionally in-
teracts with a very powerful machine via powerful but
specialized operations), the reflective relational ma-
chine is quite close to the vector machines of [PS76].
Technically, and in terms of the kinds of operations
used, our model is much closer to Immerman’s mod-
els of parallelism in terms of iterated logic and induc-
tive definitions [Tm89]. (However, the languages con-
sidered by Immerman are all subsumed by the non-
reflective relational machine, so reflection is not cap-
tured.) To simulate PSPACE by a relational machine,
we simulate by a single query the alternation aspect of
PSPACE [CKS81], not unlike the way that Immerman
simulates lower-level parallelism [Tm89]. For the other
direction, the technically hard part is building a kind
of “programmable logic array,” which can be special-
ized to circuits computing any polynomially-bounded
FO expression that the machine may submit to the
relational store.

However, we do show that reflective relational ma-
chines are not altogether boring members of the sec-
ond machine class, by pointing out that for them poly-
nomial space coincides with Turing machine ezponen-
tial space (instead of the expected exponential time,
Theorem 4.5).

Finally, we consider the power of reflective ma-
chines subject to restrictions on the number of vari-
ables used in a computation, as functions of the in-
put. The interesting case is when the bound is “sub-
linear”: above O(1) and below O(n). This is because
the O(1) and O(n) cases are two significant extremes:
the O(1) bound yields a restricted machine equivalent
to the non-reflective relational machine, so reflection
becomes purely cosmetic; and, at the other extreme,
O(n) variables are sufficient to completely identify the
input, yielding devices which can define all proper-
ties. We show that the power of sublinear machines
lies strictly between the O(1) and O(n) machines, and
that there is a hierarchy among them.

We also look at what happens when sublinear
variable complexity restrictions are combined with
time/space restrictions, and show that there is a mis-
match between the classes so definable, and classical
complexity classes. Thus, for machines with sublinear
variable complexity, one cannot hope to obtain with-
out order the kind of exact characterizations described
above. In this respect, the behavior of reflective ma-
chines with sublinear variable complexity 1s similar to
that of relational machines, and is also caused by the

restriction on the number of variables. However, some
subtleties arise because the bound on the variables is
dynamic. Nonetheless, we manage to extend to sub-
linear reflective machines a normal form shown for re-
lational machines [AV91], reducing computation over
an unordered input to an ordered input. This bridge
between computation with and without order provides
a key technical tool. For reflective machines, the re-
duction is done via a PSPACE computation. This is
not as good as for relational machine, where the re-
duction takes only polynomial time. It remains open
whether this can be improved.

There has been little previous formal work on re-
flection in database languages. Ross introduces in
[R92] relational algebra with a limited form of reflec-
tion, allowing relations that contain relation names.
In [VVV93], relational algebra is augmented with the
ability to dynamically generate and evaluate queries
encoded in relations, yielding Reflective Relational Al-
gebra (RRA). The results provide a connection be-
tween RRA and relational algebra with bounded loop-
ing (introduced in [Ch81]). As a corollary, the data
and expression complexity of RRA and of a restricted
version of RRA are established.

The paper begins with an informal review of some
query languages and of the relational machine. Proof
sketches for some of the results are provided.

2 Background

In this section we briefly review several query lan-
guages, and some basic results on the relational ma-
chine.

In databases, only finite structures are considered.
Most traditional query languages are based on first-
order logic without function symbols (here FO). The
simplicity of Codd’s algebraization of FO and the fact
that FO is in (uniform) ACy [Im87] (and, thus, in a
reasonable sense, takes constant parallel time) explain
the appeal of FO as a query language. However, FFO
cannot compute simple queries like connectivity of a
graph. Intuitively, this is due to the lack of recursion.

Most of the extensions of FO with recursion that
have been proposed converge towards two classes
of queries, fizpoint and while [CH82]. The fizpoini
queries (fizpoint) [CH82] are constructed using the
first-order constructors as in FO together with a fix-
point operator (p). The fixpoint operator binds a
predicate symbol T that is free and that appears only
positively (i.e., under an even number of negations)
in the formula. The semantics is given by the least

fixpoint of the formula, and convergence is guaran-
teed in polynomial time. Fizpoint expresses exactly P
on ordered databases [Im86, Var82]. Tt cannot, how-
ever, express the evenness query. The while language
was originally introduced in [CH82] in a procedural
form. FO is extended with (i) sorted relational vari-
ables (X7, ...), (ii) assignment of FO queries to vari-
ables, and (iii) a while construct allowing to iterate a
program while some condition (e.g., X =) holds. An
alternative definition of while based on partial fizpoint
logic is proposed in [AV89]. While expresses PSPACE
on ordered databases [Var82], but, like fizpoint, cannot
express the evenness query on an unordered set,.

A relational machine is a Turing Machine (TM)
augmented with a finite set of fixed-arity relations
forming a relational store. This models general com-
putation (the Turing component) interacting with a
database (the relational store). Tt is easy to see that
this generalizes most query languages, including fiz-
point and while. The machine works as follows. Des-
ignated relations contain initially the input. In a tran-
sition, the relational store can be modified through a
first-order (FO) query. The input is accepted iff the
machine halts in an accepting state.

Note that a relational machine uses a fixed set of
queries; the arity of a relational machine is the maxi-
mum number of variables used in its FO queries.

Although the TM component of relational ma-
chines provides full computational power, relational
machines do not express all computable queries. In-
deed, relational machines are subsumed by infinitary
logic with finitely many variables, L% [BaT77], and
so have a 0-1 law [KV90] and cannot express certain
“simple” queries such as evenness.

The relational machine displays a puzzling range
of expressive power: it collapses to FO on sets,
but is complete on ordered inputs. As discussed in
[AVI1, AV92], this behavior is due to the fact that
relational machines using some constant &£ number of
variables have limited discerning power: given an in-
put, different tuples may not be distinguishable us-
ing k variables. Thus, the machine really manipu-
lates classes of the equivalence relation on k-tuples:
u =g, v on input [iff u and v cannot be distinguished
by any relational machine with & variables running
on input I. As implicit in [IL90, AV91] and shown
in [AV92, KV92], = can be computed by a fizpoini
query for each k. Moreover, the fizpoint query outputs
the classes of =, in some order. This allows reducing
computations over unordered inputs to ordered inputs,
and yields the following normal form for relational ma-
chines, which provides a key technical tool: For each

relational machine M, there exists an equivalent ma-
chine which works in two phases. The first phase com-
putes = and a set of summary tables describing the
action of first-order queries with k variables on the
classes of =;. For an input I, let summary (1) be the
set of summary tables obtained for I. To conclude the
first phase, the summary tables are coded on the tape
using the integers representing the equivalence classes.
(The entire first phase is done in P.) Next, the compu-
tation is carried out exclusively on the tape, using the
information provided by summary; (7). The content
of a relation is represented at all times by a sequence
of integers representing the equivalence classes it con-
tains.

For Turing machines, the most natural measure of
complexity is in terms of the size of the input. This is
no longer so for relational machines, since such ma-
chines cannot measure the size of their input. In-
stead, relational machines are sensitive to the num-
ber of classes of =; on input I, called the k-size of I.
The use of k-size as a measure of the input for a rela-
tional machine gives rise to a new notion of computa-
tional complexity, called relational complezxity, result-
ing in classes such as P, (relational polynomial time),
and PSPACE,. Tt is shown in [AV91] that P, = fiz-
point and PSPACE, = while, generalizing the results
of [Im86, Var82] that P = fizpoint and PSPACE =

while, on ordered inputs.

3 The Model

A reflective relational machine M is a Turing ma-
chine with a special gquery tape and a separate re-
lational store, capable of storing arbitrary relations
Rg, Ry, Ro, Initially, the relational store contains
only the input relation® Ry whose arity ro depends
only on M all tapes are empty and the initial state
prevails. M then computes as an ordinary Turing
machine, with the following unique exception: When
state ¢, the “query state,” is entered, then the con-
tents of the query tape are interpreted as a F'O query.
We allow both relation definitions and updates of the
form

Rj s ¢(Ri1:) Rik)a
and yes-no queries of the form
¢(Ri1a sy le)‘?

., 1 are natural numbers, and ¢ is a F'O

.., Ri }. Actually,

where 7,11, ..

formula over the vocabulary {R;,,.

3Inputs consisting of several relations can also be considered
without complication.

we allow general updates in addition to the yes/no
queries only in order to model more faithfully reflec-
tive database programs; in our simulation of PSPACE
in the proof of our main theorem only yes-no queries
are employed —in fact, essentially a single such query.
In response to the query state ¢, the relational store
i a single step executes the query on the query tape,
suitably updating (or creating) the stored relation R;
—or, in the case of a yes-no query, communicating
the yes-no answer on the query tape. If undefined re-
lations are mentioned in the query, or if the query tape
contains any other syntax error, the machine halts and
rejects.

The time spent by a reflective relational machine on
input Ry is the total number of steps (including one
step for each query execution) until the machine halts
—if it does; the corresponding amount of space is the
maximum number of tape squares occupied during the
computation.

Let S be a set of finite relations, all of the same
arity. We say that the reflective relational machine M
decides S if the following is true: M on input Ry halts
and accepts if Rg € §; and M on input Ry halts and
rejects if Ry ¢ S. We say that M decides S in time (or
space) f(n) if it decides S, and furthermore on input
Ry it spends time (respectively, uses space) bounded
by f(n), where n is the number of distinct elements
appearing in the tuples of Ry.

It should be clear that, if § is a set of structures
decidable by a reflective relational machine M, then
S must be generic, or permutation-invariant; that is,
S € S if and only if S; € §, where S; is S with its
constants permuted by an arbitrary permutation .
Generic sets of structures are called properties.

We now make some simple remarks on the power
of reflection. The relational machine model defined in
[AVI1] (actually called “loosely coupled generic ma-
chine” in that paper; the term “relational machine”
was first used in [AVV92]) used a finite set of queries
specified a prior:in the control of the machine. There-
fore no reflection is allowed. However, it was shown in
[AV92] that no additional power is gained if the rela-
tional machine is augmented with reflection, as long as
the number of variables allowed on the query tape is
constant. Thus, the power of reflection resides in the
use of queries with unbounded number of variables.
This naturally leads to considering the variable com-
plexity of a reflective machine M on input Ry, which
is the largest number of variables ever used in a query.
Thus, ordinary relational machines are equivalent to
reflective relational machines with O(1) variable com-
plexity.

It is immediate that reflective relational machines
are more powerful than ordinary ones. In polyno-
mial time, non-reflective relational machines can de-
cide properties in the set P,, that is, properties ex-
pressible in F'O logic with fixpoint. This class ex-
cludes trivial properties, such as graphs with an even
number of nodes. In contrast, there is a reflective rela-
tional machine M which decides graphs with an even
number of nodes: Given a graph Ry, M goes on to ask
queries of the form

Jzq ... Tz /\ (z; # 2;)]7

1<i<j<m

for m = 1,2, ... until it receives a negative answer. It
then accepts if the last m was odd, and rejects other-
wise. Hence reflective relational machines are indeed
more powerful than ordinary ones. Just how powerful
are they? Clearly, a reflective machine can completely
identify (up to isomorphism) a relation with n ele-
ments, using n variables. Once complete information
about the input is obtained, the machine can then de-
cide acceptance by a regular Turing computation on
the tape. Thus, it is easy to see that reflective rela-
tional machines can define all recursive properties.

The expressive power of reflective machines with
sublinear variable complexity is trickier, since 1t seems
that a structure cannot be identified with fewer than
n variables. This issue i1s examined in Section 5.

In most of the paper we look at reflective machines
of variable complexity at least linear, and with addi-
tional time/space bounds. (Note that a time/space
bound implies a variable complexity bound, but the
converse is obviously false.) The primary focus is the
connection with (parallel and sequential) complexity
classes.

4 Polynomial-time/space Reflective

Machines
Polynomial-time reflective machines

We consider next the power of polynomial-time re-
flective relational machines. First, we make an ob-
servation showing that order is irrelevant for such ma-
chines. As noted earlier, a reflective machine can com-
pletely identify its input using O(n) variables. In fact,
this can be done in polynomial time.

Lemma 4.1 There exists a polynomial-time reflec-
tive relational machine which, for each input relation
Ry, produces on the tape a standard encoding of Rg.

We now state the result relating polynomial-time
reflective machines to PSPACE. A priori, the fact
that polynomial-time reflective machines stay within
PSPACE is counterintuitive, since polynomial-time re-
flective machines can build relations of polynomial ar-
ity, and so of ezxponential size. Conversely, PSPACE
computations can run for exponential time, so the fact
that they can be simulated by a polynomial time re-
flective machine may appear surprising. However, as
discussed in the introduction, the result appears less
surprising when viewed from the point of view of par-
allel complexity, where results of this nature exist, but
are formulated in terms of circuits. Indeed, the proof
of our result makes explicit the connection to paral-
lel complexity, via circuits of polynomial depth and
exponential size.

Theorem 4.2 The class of properties decidable by
reflective relational machines in polynomial time is
precisely the class of properties decidable in PSPACE.

Proof: For one direction, suppose that & is
a property decidable in PSPACE. That is, there
is a polynomial-time alternating Turing machine A
[CKS81] which accepts input z if and only if it en-
codes a relation in §. In fact, we shall look at the
computation of the alternating machine on input z as
a circuil that forms a full binary tree of depth p(n)
(where n is the number of constants in the input re-
lation encoded by z, and the gates strictly alternate
between AND and OR gates), such that there is a
polynomial-time algorithm for deciding, for each in-
put z and leaf ¢, whether input gate £ is TRUE or not
in the computation on input z.

We shall exhibit a reflective relational machine M
that decides §. M starts like the machine that decides
evenness in the previous section, by determining the
number n of constants in the structure Ry. Then it
goes on to determine the value of p(n) —the depth
of the alternating tree of A. M then encodes its in-
put Ry as a binary input z of A — this can be done
in polynomial time by Lemma 4.1. From the fixed
polynomial-time algorithm which decides whether a
leaf is TRUE or not, the value of n, and the bit-
string , M next constructs on the tape a circuit C; of
polynomial size, with inputs y1, . . ., Yp(n), standing for
the address of a leaf, with the property that C, out-
puts TRUE if and only if with input = to A, the leaf

Y1, -, Yp(n) 1S an accepting one. Let z1,..., 2z, be the
gates of C; other than its input gates y1,..., ypn) —
polynomially many of them. Let ©[C:](y1,. .-, ¥p(n))

be a first-order forumula expressing the circuit Cj,

ie. 9[Cel(y1, - -, Yp(n)) holds iff C; outputs TRUE on

input yi,...,Ypn). Clearly, [Ce](y1,. .., Yp(n)) can
be expressed using existentially quantified variables

Z1,...,%, corresponding to the internal gates of Cj.
For example, if z5 is the AND of z53 and z4, ¢[Cy]
contains the clause

(5= 1) = [(z2 =) A (22 =)]
If z, is the output of Cy, ¢[C;] also contains the clause
(zy = 1). Finally, M asks the following query:

VY2 - VY@ Cal(Y1s - 5 Yp(n))?

The answer to this query is M’s final accep-
tance/rejection answer. In the above, Jyiy really
means Jy[(y = 0)V (y = 1) A], andVyy really means
Yy[[(y = 0) V(y = 1)] —], where 0 and 1 are con-
stants.

We claim that M accepts input Ry if and only if
Ry € §. M accepts its input if and only if its fi-
nal query is a valid first-order expression, which holds
if and only if the alternating tree that captures the
computation of A evaluates to TRUE, which is equiv-
alent to saying that A accepts the encoding of Ry, or
Ry €S.

For the other direction, suppose that S is a prop-
erty decided by a reflective relational machine M in
time p(n), where n is the number of constants in the
input. We shall show that § is in PSPACE. To this
end, we shall describe a polynomial-space uniform,
polynomial-depth family of circuits Cay = (C1, Cy, ..)
that accepts precisely the encodings of structures in S.

Let us fix n, the number of constants in the input.
The circuit C, consists of the cascading of p(n) copies
of the same circuit D,,, which simulates a step of M.
D,, has a large number of inputs, and the same num-
ber of outputs; in particular, it has p(n) - (n?(") + 2)
inputs and outputs. For each of the possibly up to
p(n) relations defined by M (we can assume without
loss of generality that M never refers to a relation R;
with j > p(n)), each relation being of arity up to p(n),
and for each of the possible n?(") tuples in this rela-
tion, we have a binary input and a binary output of
D,, denoting whether or not the tuple is present be-
fore and after the step simulated by this copy of D,.
These p(n) - nP(™) bits constitute the relational part of
the input and output of D,,. We also have p(n) bits
denoting whether each relation has been defined, plus
p(n) more bits describing the tapes and state of M.

D,, performs a step of M; naturally, the difficult
case 18 when it is a query step, that is, the state is ¢.
Each query is a first-order expression of length at most
p(n), and so it can be expressed as an unbounded fan-
in circuit with p(n) alternating levels. The problem is,

of course, that the query is not known a priori, but it
is encoded in the bits of the non-relational part.

To overcome this problem, we build a general-
purpose circuit, where we have p(n) alternating levels,
each level with p(n) - n?(®) gates, and each gate hav-
ing as inputs all gates at the previous level and their
negations (naturally, since our gates are of fan-in two,
we must simulate this by many full binary trees of
gates feeding the next level). So far this circuit com-
putes non-sense; we must describe how to transform
this generic “programmable logic array” into a circuit
that implements the present query. Consider a gate
gij, where 1 < i < p(n) is the level and 1 < ¢ < np(n)
is the index of the gate at the ith level. In the correct
circuit that implements the present query, g;; may or
may not be an input of g;11,5. We claim that this is
a bit, denote it d;;z, which can be computed in poly-
nomial time from the non-relational part of the in-
put. Similarly for the negation of g;; being an input
of gi41,5. It follows that D), can be built in polyno-
mial space, and has depth O(np?(n)). This concludes
the proof. O

Note that, in the proof of the theorem, the reflec-
tive machine used in the simulation of PSPACE has
the property that the relations in the store have con-
stant arity (since only yes/no queries, and no updates,
are required). Also, note that the inclusion of the re-
flective machine in PSPACE is obvious if the size of
the store, as well as the tape, is bounded by a polyno-
mial. Thus, we have:

Corollary 4.3 The following are equivalent and ex-

press PSPACE:
(i) polynomial-time reflective machines;

(ii) polynomial-time reflective machine with

constant-arity relations;

(iii) polynomial-space reflective machines with

constant-arity relations; and,

(iv) polynomial-space reflective machines with

polynomially-bounded relational store.

Theorem 4.2 suggests that reflectiveness allows for a
more “intense” data parallelism than in classical, non-
reflective query languages. Indeed, consider the stan-
dard (non-reflective) relational machine, which, as dis-
cussed earlier, subsumes all common query languages.

Theorem 4.4 Assuming P # PSPACE, there is a
property that can be checked in polynomial-time by
a reflective relational machine, but which requires su-
perpolynomial time in any non-reflective relational
machine.

Proof: Consider a set 8’ of ordered structures which
is in PSPACE but not in P. Let § be the property
saying that the input is ordered and has property &'.
By Theorem 4.2, there exists a reflective relational
machine accepting § in polynomial time. There are
also standard relational machines that accept §, since
the input is ordered. Suppose this can be done in
polynomial time. Then it would follow that & is in P,
contradiction. O

Thus, reflection allows in principle to express more
parallelism in a natural and easily detectable way.

Polynomial-space reflective machines

Recall that a polynomially-space bounded reflective
machine is restricted to a polynomial amount of tape,
but there is no restriction on the size of the relational
store (which may in fact grow to exponential arity
and doubly exponential size). Interestingly, the com-
plexity class captured by such machines is precisely
EXPSPACE. The reason is that, because of the ex-
tensive relational storage, computations that require
only polynomial-space on the tapes need not termi-
nate within exponential time.

Theorem 4.5 Polynomial-space bounded reflective
relational machines decide precisely the properties de-

cidable in EXPSPACE.

The nontrivial direction is to simulate exponential
space with a polynomial-space bounded reflective re-
lational machine. This is done by first defining an
exponentially large relation, whose tuples correspond
to the tape squares of the simulated machine. The
queries then repeatedly update the tape according to
the moves of the simulated machine. The details are
omitted.

Lower complexities

The reflective relational machine is evidently a ma-
chine of the “second class” [vE90], a parallel model of
computation. It is interesting that it can be used to
capture feasible parallel computation (notice that, as
is typical below NP, we now need order):

Theorem 4.6 On ordered structures, reflective re-
lational machines operating within polylogarithmic
time, and with a bounded number of variables per
query, decide precisely the properties decidable in NC.

The proof is similar to that of Theorem 4.2. Notice
that, as anticipated in the work of Immerman [Im89],
hardware is exponential in the number of variables.

Furthermore, the power of polynomial time reflec-
tive machines with O(1) variables can now be ex-
pressed as follows:

Theorem 4.7 On ordered structures, reflective re-
lational machines operating within polynomial time,
and with a bounded number of variables per query,
decide precisely the properties decidable in P.

Note that the above theorems require O(1) vari-
able complexity of the reflective machines. And, we
know that reflective machines with O(1) variable com-
plexity can be simulated by non-reflective machines.
In fact, the simulation of each dynamically generated
query in the reflective machine can be done by a non-
reflective machine in polynomially many steps in the
size of the query [AV92]. Since P and NC are poly-
nomially closed, the above results hold for the non-
reflective relational machine as well. However, reflec-
tive machines with O(1) variables may still have an ad-
vantage over non-reflective machines for finer bounds
where the polynomial simulation makes a difference.

5 Sublinear variable complexity

We now briefly return to the question of the vari-
able complexity of reflective machines. Recall that
machines with O(n) variable complexity are able to
completely identify their input, and can therefore de-
fine any recursive property. At the other extreme,
the reflective machine with O(1) variable complexity is
equivalent to the non-reflective machine, and has lim-
ited expressive power even with no time/space com-
plexity bound. Indeed, such machines are subsumed
by the infinitary logic L%, , so they have a 0-1 law and
cannot compute simple properties like evenness.

How about reflective machine with variable com-
plexity in between O(1) and O(n)? We next com-
pare such machines to the machines with variable
complexity O(1) and O(n). A function f from the
non-negative integers to the positive integers is a sub-
linear bounding function if it 1s a monotonically in-
creasing, computable function from positive integers
to positive integers, such that lim,_ f(n) = co and
lim, oo f(n)/n = 0. We say that a reflective rela-
tional machine has sublinear variable complexity if it
has variable complexity f(n) where f is a sublinear
bounding function.

First, note the following useful fact:

Lemma 5.1 On unary inputs, reflective machine
with sublinear variable complexity are equivalent to

machines with O(1) variable complexity, and express
the F'O properties.

The proof is similar to the argument in [AV91,
AV92] showing that relational machines on sets col-
lapse to FO. In particular, the lemma shows that
reflective machines with sublinear variable complex-
ity cannot express the evenness query on a set, so are
weaker than reflective machines with O(n) variables.
(Note that, unlike O(1) machines, sublinear machines
do not have a 0-1 law, so this route cannot be used to
show that evenness is not definable.) Indeed, we have:

Theorem 5.2 .

(i) There exist recursive (indeed, LOGSPACE) prop-
erties not definable by any reflective machine with
sublinear variable complexity.

(ii) For every sublinear bounding function f, the re-
flective machines with O(f(n)) variable complex-
ity are strictly more powerful than the reflective
relational machines with O(1) variable complex-

ity.

Proof: Part (i) follows immediately from Lemma
5.1, in particular from the fact that sublinear rela-
tional machines cannot express evenness. For part (ii),
consider a sublinear machine with variable complex-
ity O(f(n)). Consider the property of a unary rela-
tion Sy and a binary relation sucec stating that succ
is a successor relation, and |Sg| = f(|suce|). Tt is eas-
ily seen that this is definable by a reflective machine
using O(f(n)) variables: first check that succ is a suc-
cessor relation, using O(1) variables; next, compute
the size of suce, again using O(1) variables. Then
compute f(|succ|) on the tape, and finally generate
the query with f(|succ|)+ 1 (therefore O(f(n))) vari-
ables checking that the size of Sy is f(|succ]). On the
other hand, a standard pebble game argument shows
that the above property is not definable in LY, so
it is not definable by a reflective machine with O(1)
variable complexity. O

Thus, sublinear machines lie strictly between O(1)
and O(n) machines. Moreover, there is a hierarchy
within sublinear machines:

Theorem 5.3 Let f and g be sublinear bounding
functions such that limy,_ f(n)/g(n) = 0. Then
there exists a property definable by a reflective ma-
chine with O(g(n)) variable complexity but not by one
with O(f(n)) variable complexity.

Proof: Similarly to the proof of Theorem 5.2, con-
sider the property of a unary relation Sy and a binary
relation suce stating that succ is a successor relation,
and |Sg| = g(|succ|). An argument similar to that in
Theorem 5.2 shows that this property is definable by
a reflective machine with O(g(n)) variable complexity,
but not by one with O(f(n)) variable complexity. O

So far, we considered the power of reflective ma-
chines with sublinear variable complexity but with no
bound on the time or space complexity. Let us fi-
nally look at what happens if one places such com-
plexity bounds on these machines. Recall that, in the
case of non-reflective relational machines, there is mis-
match between complexity classes and classes defin-
able using the machines; indeed, this gave rise to the
notion of “relational complexity”, based on the dis-
cerning power of each machine rather than the input
size. On the other hand, this problem does not oc-
cur with reflective machines with variable complexity
over O(n), due to their ability to completely identify
their input. How about the sublinear case? As shown
next, the mismatch persists for these classes. More
precisely, no complexity class over P can be captured
(on unordered inputs) by sublinear machines subject
to a time or space bound:

Theorem 5.4 Let C' be a time or space complexity
class including P and polynomially closed. There is
no time/space complexity class C’ such that the prop-
erties in C’ are precisely those definable by the re-
flective relational machines with time/space bound C
and variable complexity O(f(n)), where f is a sublin-
ear bounding function computable in C'.

Proof: Suppose, towards a contradiction, that the
properties definable by reflective machines with vari-
able complexity O(f(n)) and time/space C' are exactly
those of complexity C”’, for some C’. Clearly C’ must
contain C'. Consider the property of two unary rela-
tions A, B stating that A C B and |A| = f(|B]|). This
property is in C” (this uses the fact that P C C C C").
However, it is not definable by any reflective machine
with variable complexity O(f(n)). Intuitively, the dif-
ficulty is that such a machine cannot compute f(|B])
without computing |B|, which cannot be done with
O(f(n)) variables once B is past a certain size. O

Discerning power of sublinear machines

There 1s a strong analogy between the behavior of
sublinear reflective machines, with respect to expres-
sive power and complexity, and that of relational ma-
chines (which are non-reflective). They both display a

puzzling range of expressive power, collapsing to FO
on sets but expressing all properties on ordered in-
puts. The source of the behavior is, in both cases, the
limitation on the number of variables used in queries,
which in turn yields limits on the discerning power of
the machines. Indeed, a relational machine using some
constant k& number of variables has limited discerning
power: given an input, different tuples may not be
distinguishable using k& variables. Thus, the machine
really manipulates classes of the equivalence relation
on k-tuples: u = v on input 7 iff u and v cannot be
distinguished by any relational machine with £ vari-
ables running on input 7. See Section 2 for a review
of the relevant results on relational machines.

For sublinear reflective machines, the situation is
similar in that the limit on number of variables re-
sults, again, in limited distinguishing power. We wish
to generalize = and the normal form to reflective ma-
chines. One might be tempted to think that the dis-
cerning power of a sublinear machine with variable
complexity f(n) on input I is captured by =¢(z)).
However, the situation is made more complicated by
the fact that the number of variables used is deter-
mined dynamically. This involves the following sub-
tlety. A reflective machine of variable complexity f(n)
must use variables conservatively, since it must ensure
at each step, using the information currently available
about the input, that the f(n) bound is not violated.
Consequently, a reflective machine with variable com-
plexity f(n) cannot necessarily attain the number of
variables f(n) on an input of size n. This happens, for
example, on unary inputs, where any sublinear ma-
chine can in fact only use O(1) variables (see Lemma
5.1). Let k(f, T) be the maximum number of variables
actually used by some reflective machine with variable
complexity f(n) on input I. We claim that k(f,I) is
computed by the following “bootstrapping” algorithm.

ALGORITHM Bootstrap

1. k:= f(0);

2. repeat until no further change:
3. compute summaryy (1);
4. find Iy of minimum size such that

summaryy (Iy) = summaryy (1);

5. k= (o))

6. k(f, 1) :=k.

Note that, in Algorithm Bootstrap, the successive
values of k computed by the algorithm are nondecreas-
ing. This is because the successive summary; (1) pro-
vide increasingly accurate information about 7, so for

k<Fk,
{J | summaryy(J) = summary; (1)} D

{J | summaryy (J) = summaryy (I)}.

We can show:

Theorem 5.5 Algorithm
k(f,1).

Consider the complexity of Algorithm Bootstrap.
Ignoring the complexity of computing f, which can
be arbitrary, step 3. takes time polynomial in |I],
but step 4. takes polynomial space by a brute-force,
exhaustive search for Ip. It remains open whether this
can be improved.

It is now apparent that the distinguishing power of
sublinear reflective machines is captured by the equiv-
alence relation = (s 1y on k(f, I)-tuples. We can now
obtain the following normal form for sublinear reflec-
tive machines:

Bootstrap computes

Theorem 5.6 Let f be a sublinear bounding func-
tion computable in PSPACE. For each reflective ma-
chine with variable complexity O(f(n)) there exists an
equivalent reflective machine with variable complexity
O(f(n)) whose computation consists of two phases:

1. A computation of complexity PSPACE producing
on the tape a standard encoding of an ordered
structure, followed by

2. A computation involving only the tape.

Proof: Let M be a reflective machine with vari-
able complexity ef(n) for some constant ¢. On input
I, the first phase computes k(cf,T) as in Algorithm
Bootstrap, then summaryg.; r)(I), which is isomor-
phic to an ordered structure whose elements are the
classes of =p(.; 1) (this uses 3k(cf,I) variables, i.e.
O(f(n))). To end the first phase, summarygs r)(I)
is encoded on the tape. The second phase simu-
lates the computation of M using exclusively the tape;
queries are answered using the information provided
by summaryy; n(I). O

The above normal form provides a bridge between
computation without order and computation with or-
der for sublinear reflective machines. It shows that a
computation of a sublinear O(f(n)) reflective machine
over an unordered input can be reduced to a computa-
tion over an ordered input in polynomial space (mod-
ulo the complexity of f). It remains open whether

the complexity can be improved. Recall that for re-
lational machines, the first phase of the normal form
takes polynomial time (see Section 2).

Lastly, note that two structures 7,J are equiv-
alent with respect to reflective machines of vari-
able complexity f(n) iff k(f,I) = k(f,J) and
summaryy(s,ry(I) = summaryg s 5y(J). Thus, equiv-
alence of structures with respect to such machines can
be decided in PSPACE (again, modulo the complex-
ity of computing f). Also, for structures 7,.J such
that k(f,T) = k(f,J), equivalence with respect to
reflective machines with f(n) variable complexity is
characterized by the k(f, I)-pebble game for LESD
[Im82, Po82].

References
[AV89] S. Abiteboul and V. Vianu. Fixpoint exten-
sions of first-order logic and Datalog-like
languages. In Proc. Fourth Annual Sympo-
stum on Logic in Computer Science, Asilo-
mar, California pages 71-79, 1989.

[AVI1] S. Abiteboul and V. Vianu. Generic com-
putation and its complexity. In Proc. ACM
SIGACT Symp. on the Theory of Comput-

ing, pages 209-219, 1991.

[AV92] S. Abiteboul and V. Vianu. Computing

with first-order logic. To appear in JCSS.

[AVV92] S. Abiteboul, M. Vardi, and V. Vianu.
Fixpoint Logics, Relational Machines, and
Computational Complexity. In Proc. Conf.

on Structure in Complexity Theory, 1992.

[BDK92] Building an object-oriented database sys-
tem, the story of O, eds. F. Bancilhon, C.
Delobel and P. Kannelakis, Morgan Kauf-
mann, 1992.

[Ba77] J. Barwise. On Moschovakis closure ordi-
nals. In J. of Symbolic Logic, 42, pages

292-296, 1977.
[Ch81]

A K. Chandra. Programming primitives for
database languages. In Proc. ACM Symp.
on Principles of Programming Languages,

pages H0-62, 1981.

[CH82] Chandra, A.K., D. Harel, Structure and
complexity of relational queries, Journal
of Computer and System Sciences 25:1

(1982), pp. 99-128.

[CKSS1]

[C193]
[DGY2]

[Fri71]

[Gu84]

[VE90]

[FaT74]

[Im82]

[Tm86)

[Tm87)

[Tm89]

[TL90]

[KV0]

A K. Chandra, D.C. Kozen, and L.J. Stock-
meyer. Alternation. In JACM, pages 114-
133, 1981.

S. Cluet. Personal communication, 1993.

D.J. Dewitt and J. Gray, Parallel Database
Systems: the Future of High Performance
Database Systems, Comm. ACM, Vol. 35,
no 6, 1992.

H. Friedman. Algorithmic procedures, gen-
eralized turing algorithms, and elemen-
tary recursion theory. In R.O.Gangy and
C.M.E.Yates, editors, Logic Colloguium
’69, pages 361-389. North Holland, 1971.

Y. Gurevich. Toward logic tailored for com-
putational complexity In Computation and
Proof Theory, ed. M.M. Richter et.al, pages
175-216, Springer-Verlag LNM 1104, 1984.

P. van Emde Boas. Machine models and
simulations. In Handbook of Theoreti-
cal Computer Science, vol. A, ed. J. van
Leeuwen, Elsevier Science Publishers B.V .,

1990.

R. Fagin. Generalized first-order spectra
and polynomial-time recognizable sets. In
Complezity of Computation, ed. R.Karp,
SIAM-AMS Proc. 7, pages 43-73, 1974.

N. Immerman. Upper and lower bounds
for first-order expressibility. In JCSS, 25,
pages 76-98, 1982.

N. Immerman. Relational queries com-
putable in polynomial time. Inf. and Con-

trol, 68:86-104, 1986.

N. Immerman. Languages which capture
complexity classes In STAM J. on Comput-
ing, 16(4), pages 760-778, 1987.

N. Immerman. Expressibility and paral-
lel complexity. In STAM J. on Computing,

18(3), pages 625-638, 1989.

N. Immerman and E.S. Lander. Describ-
ing graphs: a first-order approach to graph
canonization. In Complezity theory ret-
rospective, ed. A. Selman, pages 59-81,
Springer-Verlag, 1990.

P.G. Kolaitis and M.Y. Vardi. 0-1 laws for
infinitary logic. In Proc. Symp. on Logic in
Computer Science, pages 156-167, 1990.

[KV92]

[Lei89a]

[Lei89b)

[PS76]

[R92]

[Val93]

[VVV93]

[Var82]

P.G. Kolaitis and M.Y. Vardi. Fixpoint
logic vs. infinitary logic in finite-model the-
ory. In Proc. Symp. on Logic in Computer
Science, pages 46-57, 1992.

D. Leivant. Descriptive characterization
of computational complexity. Journal of
Computer and System Sciences, 39:51-83,
1989.

D. Leivant. Monotonic use of space and
computational complexity over abstract
structures. Technical Report CMU-CS-89-
212, Computer Science Dept., Carnegie-
Mellon, 1989.

02 user manual.

C.H. Papadimitriou. A note on the expres-
sive power of Prolog. In Bulletin of the
EATCS, 26, pages 21-23, 1985.

B. Poisat. Deux ou trois choses que je sais
de L,. In J. of Symbolic Logic, 47(3), pages
641-658, 1982.

V.R. Pratt and L. Stockmeyer. A charac-
terization of the power of vector machines.

In JCSS 12, pages 198-221, 1976.

K. Ross. Relations with relation names
as arguments: algebra and calculus.
In Proc. 11th ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database
Systems, pages 346-353, 1992.

P. Valduriez. Parallel Database Systems:
Open Problems and New Issues, Dis-
tributed and Parallel Databases 1, 137—
165, Kluwer Academic Publishers, Boston,
1993

J. Van den Bussche, D. Van Gucht and
G. Vossen. Reflective programming in
the relational algebra. In Proc. 12th
ACM SIGACT-SIGMOD-SIGART Symp.
on Principles of Database Systems, pages
17-25, 1993.

M.Y. Vardi. The complexity of relational
query languages. In Proc. ACM SIGACT
Symp. on the Theory of Computing, pages
137-146, 1982.

